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HYPERSONIC FLOW PAST A DELTA WING AT LARGE ANGLES OF ATTACK* 

V.N. GOLUBKIN 

The thin shock layer method /l, 2/ is used to investigate the previously 
unknown mode of flow past a delta wing of finite span, at angles of 
attack close to x/2. The flow problem is formulated and analytic expres- 
sions are obtained for the gas-dynamic functions together with the 
equations expressing the relationships between the form of the wing 
surface and the shock wave. A method is given for solving inverse 
problems of flow past actual wings with an attached shock wave. 

If the angle of attack remains finite, when the ratio e of the 
densities on the shock wave tends to zero, the shock wave will remain 
attached to the sharp leading edge of the wing at any finite sweep-back 
angle. The basic results of the study of such a flow were given in /3/. 
On the other hand, when the angles of attack are close to ~12, a flow 
with a detached shock wave results. 

Below it is shown that when eei, a flow past a delta wing exists 
for the range of angles of attack close to n/Z,ar= xl2 --sli'A, with the 
shock wave attached to the wing tip, but attached to or detached from 
the leading edge, depending on the sweep-back angle. This mode falls 
between the two modes mentioned above, and lends itself to analytic 
study. 

1. Let us consider hypersonic gas flow past a delta wing at large angles of attack 

a = nl2 - A *, O<A,((l (1.1) 

Let Ozyz be a Cartesian coordinate system attached to the wing (Fig.1). We assume that 
the thickness of the wing measured from the base plane y =O 
is small. Since the gas is strongly compressed in the 
leading shock wave, it follows that the shock surface will 
also be near the plane y = 0 and the small parameter of 
the thin shock layer method equal to the ratio of the densit- 
ies across the shock will have the form 

e=$+(1+$) (1.2) 

m=(%-l)X=0(1) 

where x is the adiabatic index and !M, is the M number of 
= AE”, A = 0 (1) in (1.1). 

Fig.1 
the oncoming flow. We put A, 

We will obtain the order of magnitude of the perturba- 
tion by considering the flow past the leading edge of a 

plane wing with a finite sweep-back angle h(CoS A =0(l)). We will write the equation of the 
attached shock wave in the form 

y, = Y (2 cos A - z sin A) 

where Y (E, cz, A) is an unknown quantity, to be determined. 
Using the well-known relations for the shock wave we obtain an expansion for the velocity 

component normal to the wing, which should vanish in accordance with the principle of imperme- 
ability. Taking into account the terms of lowest order of smallness we obtain, as e - 0, 

CAY cos A - Ys - e + . . . = 0 (i.3) 

and this yields a solution corresponding to the weak branch of the shock wave 

*Prikl.Matem.Mekhan.,48,3,376-382,1984 



271 

Y = ‘Jz [$‘A cos A - (PA2 coti’ A - 491 (1.4) 

We see that when n < 'Jar and especially when n= 0 /3/, the shock is attached to the 
edge, for any finite sweep-back angle. When n = l/a,we must retain all terms in (1.3) and the 
expression under the square root may become negative. This implies that in the cross-section 
normal to the edge, the angle by which the flow rotates exceeds the limit value and the flow 
with attached shock wave does not materialize. 

The case when n =I/,, A 22, i.e. 

a=n/2-OA, A>2 (1.5) 

is special. If we increase the sweep-back angle at a fixed angle at attack (1.5), then accord- 
ing to (1.4) we have at A = A* = acccos (2/A) a transition from the mode of flow with a shock 
wave attached to the leading edge (0 < A d A*), to the mode with a shock wave detached from the 
edge (A> A*). At the same time, it is obvious 14, 5/ that the shock wave remains attached 
to the tip, i.e. a conical flow is possible. However, in a flow past a finite-size wing the 
influence of the trailing edge does not extend upstream if the flow is supersonic everywhere 
within the compressed layer. This condition will be formulated later, At large angles of 
attack (n = r/ar A (2 or n>rlz ) a flow with a shock wave attached to the edge is not possible. 
Further specification of the flow mode requires in this case (shock wave attached to the tip, 
or fully attached) a global solution of the problem of the streamline flow /6, 7/, or the use 
of experimental data /a/. 

Let us consider the special case c1:5,, which is intermediate between the flow past a wing 
with a shock wave attached & the edge for any value of A, and the flow with a shock wave 
detached from the edge for any A. Estimating the order of magnitude of the perturbed functions 
in the compressed layer in the range of values of the angle of attack under consideration we 
find, as e-+0 , that 

u. - w - s'W,, u-e DD, V p - e-‘pcs 
(1.61 

P-Pp, - - 1 -s, 
PE.Vz, 

d - E'I'C 

where U,V,W are the velocity components along the x, Y, = axes, p is the pressure, p is the 
density, d is the thickness of the compressed layer, c is the radical chord of the wing and 
the subscriptm denotes the parameters of the oncoming flow. 

We see that since the flow arives at the wing almost head-on, the gas velocity in the 
compressed layer is low and comparable in order of magnitude with the speed of sound, while 
the.thickness_of the compressed layer has 
when the angles of attack are finite /3/. 

greater order of magnitude than that of the case 

2. Let us now formulate and solve the problem. Using the estimates (1.6), we shall 
write the unknown functions in the form of expansions 

u/v, = OIL, (11, 6) + . . .* v/v, = EV, (q, 6) + . . * 

w/v, = E1/‘WO (77, b) + * . ,, P = Pm + f’kuV~-~ {I + E IP, (9, t) - A’] + . . .) 
p& = e - .s* (1 - A2 + pl) - hz (m + 2)-l (uos + q,*) + . . . 

(2.1) 

Euler's equations for the conical flows /4/ and (2.1) together yield the following set 
of equations in the basic approximation of the thin shock layer method (the indices accompany- 
ing the functions are omitted): 

(P -utl) S+(W-I&=0 (2.21 

(V-Uq)$+(W-t&)%=0 (2.31 

$++++++$)=o 
(2.4) 

(v-uq)~+(w-u~)+ - + (2.5) 

(I 6 I < z, z = cte 4 

At the surface of the shock wave we have q = q,(b), and the following conditions hold 
at the wing surface q=?b(t) : 

u, = A - t7r -i bls’, U6 = 118 (11, - 5%‘) - f - rlr’2 (2 -6) 
ws = --9rJ. ~8 = v. + A (tll - 5%') 01, = dnrid6) 
L'b = Ubr,b + (1L.b - cub) %’ (qb' = d?b'dE) (2.71 

We will solve the problem (2.2)-(2.5) as in /3, 9/, by introducing the function v, 
constant along the conic projection of the flow surface onto the plane z = 1, and equal to 
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the coordinate 5 of the point where it intersects the shock wave 

Changing to new independent variables c,$, weobtain from (2.21, (2.3), (2.6) 

u = u (9) = A - 4s (49 + ‘4%’ (44, w = w (4) = --rls’ W 
Theinclinationoftheprojection of the flow surfaces $ = const is equal to 

ti "-Uut) 
ag=- W-UC (2.8) 

Differentiating both sides of (2.8) with respect to Q and using (2.41, we arrive at 
the equation 

(w - 4) $$- T u (I4 -$ =o 
the solution of which, taking into account the condition at the wing 11 = T]!,(c) when $ = *b(c), 
we shall write in the form 

(2.9) 

where the arbitrary functions F,gb must be determined from the boundary conditions. To do 
this, we will obtain the function v from (2.8) and use conditions (2.6) in which rls (5) = 
rl (6, 0. As a result, we have 

F (E) = Iw (E) - &m (E)P 

Then, satisfying conditions (2.71, we obtain the equation for determining the function $b (D 

F ($,a) qb' (5) hJ &b) - kJ ($,a)] = 0 &b = d’# /d5) (2.10) 

The above equation has two solutions, just as in the problem of flow past a wing with 
low aspect ratio /5, 9/. The first solution qb =L c0n.G corresponds to the case when the wing 
surface coincides with the stream surface. The second solution corresponds to the stream 
function varying along the wing. The stream function is the inverse of the function N = w/u, 
i.e. 

N 1% (5)1 = 5 (2.111 

Satisfying conditions (2.10) ensures that the inclination of the projections of the flow 
surfaces onto the wing, and the inclination of the wing itself are the same, i.e. the wing 
surface is an envelope of the stream surfaces. The projection of the stream surface with a 
given value of $ ends at the wing at the point with coordinate 5 = N(q). 

The total velocity vector is directed at this point along the ray of the conical flow. 
As a result we obtain from (2.8) the following expression for the velocity u : 

+ [N (9,) - tl’b’ 

Integrating (2.5) we obtain the pressure distribution 

Thus, we have expressed all gas-dynamic parameters in terms of two functions describing 
the form of the wing, and the shock wave. In problems of streamlined flow only one of these 
functions needs to be specified, the other can be found from the solution. The equation 
connecting these functions directly can be obtained from (2.9) 

(2.12) 

Repeated differentiation taking (2.6), (2.101, (2.11) into account, enables us to write 
this relation in differential form 

1 i c* *b'(c) 

[rl,'(lf 53 + 5 (A--%)1' = qb" + 11 Mb) [%(C) - 51* 
(2.13) 

(2.14) 
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The above equations refer to the case of & =$b(c). If on the other hand $b = const, then 

the wing surface will coincide with the stream surface q = nl(<). The form of the stream sur- 
faces is described by (2.9) with $b = const and this, together with (2.121, yields 

The pressure distribution over the wing is given by 

We note that the condition mentioned in Sect.1, stating that the flow is supersonic 
everywhere within the compressed layer has, by virtue of (2.1)-_(2.3), (2.6), the form 

(A - nla + 5%')' + %'* > 1 

and solutions for the infinite wing can also be used for wings with a finite chord. 

3. The description of the wing surface in terms of the function 9 =$)a(c) and the 
system of equations (2.13), (2.14) are convenient for use in the case when the shock wave is 
attached to the edge. In the problem of a wing with detached shock wave the representation 
of the wing form as 6 = 66($) was found' to be more suitable. In this case the following 
condition analogous to (2.11) holds on the wing surface: 

6a ($) = N (9) (3.1) 

and the equation describing the form of the shock wave in a flow past a plane wing becomes 

(3.2) 

This shows that the curvature of the shock wave has a singularity at the point at which 
the expression within the curly brackets vanishes. Assuming, as in /S/, that the singularity 
lies on the characteristic straight line perpendicular to the wing and passing through the 
leading edge 6 = b(q) = Zobtain, taking (3.l)intoaccount, the mixed type boundary condition 
at the edge 

(1 + ZZ) n,' (Z) + Z 1-4 - q, (Z)l = - (1 + zy (3.3) 

Expression (3.3) and syarnetry condition q, (0) = 0 serve as the boundary conditions for 
(3.2). The solution of this problem shows that the conical modes of the streamlined flow with 
a shock wave attached to the tip only and with the flow choked at the leading edge (normal 
component of gas velocity equal to the speed of sound /6/) are also possible when A < 2 . 

4. Let us consider streamlined flow with a shock wave attached to the leading edge. 
The stream function cannot vary over the whole surface of the wing. 

Let us assume the contrary. Then (2.11) holds on the whole wing surface and we have 
(6 = 2): N = 2 on the lading edge. This implies that the slope of the streamline behind the 
shock 

becomes infinite at this point. In this case, in order not to violate the condition of imperme- 
ability, we must assume that the inclination of the wing is also infinite. But thenanattached 
shock wave cannot exist. Thus it follows that the stream function can vary only over that 
part of the wing surface which is coupled to the shock wave through the (stream) surface with 
constant \pb= Z. 

In the case of a delta wing the shock wave attached to the edge is plane on a certain 
segment, and this corresponds to one of the solutions of (2.13) where Q = nt = O,$b = con& 

Q' = const 
We note that the equation has another solution describing a curved shock wave above a 

plane wing, which can be used when constructing a solution of the direct problem 

nr = A + J'-- (farctg I; + con@ 

Coupling the smooth flow behind the plane shock wave with the vertical flow behind the 
curved shock wave near the symmetry plane, will obviously lead to the appearance of a number 
of singularities in the form of discontinuities, just as in /2, lo/. 

We shall use the solution of the inverse problem to illustrate the possiblity of construct- 
ing a wing in closed form, with a smooth attached shock wave. Since the problem is symmetrical, 
we shall consider the range 620. Let us specify the shock wave in the form of a parabola 

q, = --‘l,b6’, b > 0 
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From (2.14) we find 

(4.3) 

The form of the wing segment on which the stream function varies when O<_c,< j.,,, is 
obtained from (2.12) by means of quadratures, taking (4.2) and (4.3) into account. To couple 
this part to the shock wave when c* <<<Z, we use one of the stream surfaces (2.15) 
approaching along the tangent to the wing surface enveloping them, of the form already deter- 
mined. The magnitude of the sweep-back angle of the resulting wing A = arcctg Z and the coord- 
inate 5, depend on the choice of one or other stream surface. 

We can avoid the appearance of a cusp in the wing form by choosing a stream surface such 
that .the motion along it, from the shock wave to the body, takes place in the direction to- 
wards the plane of symmetry 5 = 0, which therefore corresponds to the flow-off line. This 
takes place when *b(c)> 5, which according to (4.3) holds when b<A, in the range G< 
a (a' = 2(Alb-I)). When b>A the flow line liesintheplaneof symmetry. A physical, real form of 
the wing obtains when the slope of the stream surface behind the shock wave is negative at the 

edge rlr ‘(Z) < 0. This occurs when b < A - f% !& < Z < CI (I, 1.2~ = a212 F (a’/4 - 2/b’)‘/*). So-called 
critical /2, 9/ cross-sections t,, may exist within the field of flow, in which the curvature 
of the projections of the stream surfaces is equal to zero and changes its sign on passing 
across these sections. The cross-sections correspond to the cases when the expressions within 
the curly brackets in (2.13) vanish. At the same time, since the centrifugal forces change 
their direction in the shock layer when 5 = 5, , the pressure difference pb(<)-P, (c) changes 
its sign on the body and on the shock wave. 

The pressure in the plane of symmetry is given in the form 

Pa 6-Y = -1 

Pb (0) = Ps co) + 2 cab_ b)’ L i b3 - 6Ab2 + 3&b + 2A3 + 6Aab In $1 

Moreover, near the plane of symmetry (c< 1) the body has the form of a parabola, 

nb = tlb0 -- ‘12 Wj 

VbO-- 
A - b + b In (b/A) 

(A-b)’ ’ B=b+ 
AZ 

2 

but unlike the solution at finite angles of attack /9/ it is not equivalent to the form of 
the body (4.2) since B>b. 

Another difference lies in the fact that the equations (2.131, (2.14) and other equations 
contain not only the derivatives T)~',Q", but also the function )la itself. Therefore, writing 
the shock wave in the form 

TI, = n,o - '/N 

instead of (4.21, will change the solution, e.g. 

Pa (0) = 2‘4lao - %I? - 1 
A --'l.,,- b fb InMA-'I.,& 

%o='Iro- (A -'I,,,-b)' 
while all the remaining formulas beginning from (4.3) retain their form provided that A in 
them is replaced by A - qsO. 

Fig.2 shows the configuration of the shock wave, stream surfaces and the envelope for 

A =3, b= 1. In accordance with what was said before, any stream surface intersecting the 
shock wave in the range 0.765< 6<1,848, e.g. the surfaces l-5, can be chosen as the console 
part of the wing. As a result we obtain a family of curves, where the thickness and prescribed 
form is that of the attached shock wave (4.2). 

0 

-0.5 

Fig.2 Fig.3 



In the present case we have two critical cross-sections j,, = 0.69, cc, = 1.17 in the range 275 

O< c<a, shown in Fig.2 by the dot-dash lines. 
The form of the wing surface with the sweep-back angle of h=n/4 is shown in Fig.3. A 

dot denotes the place where parts of the surface couple with the distributed and constant 
stream functions. Moreover, the figure shows the pressure distribution over the wing surface 
Pb(6), computed using (2.16) (solid line) and the pressure directly behind the shock wave pi 

(the dashed line). 
Note that for certain specified configurations of the shock wave, in addition to the 

sufficient conditions for constructing a smooth wing surface, the equation $)b(c) = 5 also 
holds at one or several points c# 0 , while additional lines of flow (flow-off) appear in 
the field of flow together with the line of flow (flow-off) in the plane of symmetry, just as 
in the case of flow at finite anlges of attack /9, ll/. 
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A VARIATIONAL PRINCIPLE IN THE HYDROMECHANICS OF AN 
ISOTROPICALLY MAGNETIZABLE MEDIUM* 

I.E. TARAPOV 

The ideas expressed in /I/ are used as the basis for formulating a 
variational principle for describing the motion of an isotro$cally 
magnetizable medium. Representations are obtained for the velocity field, 
magnetic field and enthalpy written in terms of the Lagrange multipliers. 
New integrals of the equation of motion are derived. 

The system of equations describing the non-relativistic motion of perfect magnetizable 
media can be written in the form /2/ (M is the magnetization of the medium) 

g+divpv=O, -+$(s+s')=o 

divB=O, $--rot[v,B]=O 

dv 
p dt 

-=-vp- V$(P) +MVR + &[rotH,B] 

(1) 
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